

Project: Benchmarking Sorting Algorithms

Assignment weighting:
50% of the module grade

Due date:
See Moodle. Late submissions will be penalised.

Submission instructions:

Where code samples are requested, the code should be neatly laid out and formatted, and
commented appropriately. Where diagrams are requested, computer-generated diagrams, as well as
clear and legible scans or pictures of neat hand-drawn diagrams are acceptable. Where an
explanation or discussion is requested, your answer is expected to be spell-checked, neatly laid out,
and to use correct and appropriate grammar and terminology.

Your report may be written using a standard word processor (e.g. MS Word) or LaTeX. Please submit
the final report in .pdf format. You should also include all source code which was written for the
project. All the files for your project submission are to be uploaded to Moodle in a single .zip folder
(NOT in a .rar, .tar.gz, .7z etc.), with the naming convention g00123456.zip, where g00123456 is your
student number.

Failure to adhere to these instructions will incur a grading penalty.

Note on plagiarism and copying:

Plagiarism is passing off the work of another person as one͛s own͘

While you are allowed to collaborate with your classmates and review online and print resources for
high-level problem solving and background research, you are each expected to code, write and
complete this assignment individually. If you use material from an external source (e.g. textbook,
webpage, lecture notes) as part of your answer(s), you must explicitly acknowledge the source of the
material.

Please see Section 4 of the GMIT Code of Student Conduct 2018/2019 for further information on
plagiarism: https://www.gmit.ie/sites/default/files/public/general/docs/7-1-code-student-conduct-
2018-2019.pdf

Plagiarism is a serious academic offence and may lead to a loss of marks and/or disciplinary
proceedings.

Project Specification

For this project you will write a Python application which will be used to benchmark five different
sorting algorithms. You will also write a report which introduces the algorithms you have chosen and
discusses the results of the benchmarking process.

The five sorting algorithms which you will implement, benchmark and discuss in this project must be
chosen according to the following criteria:

1. A simple comparison-based sort (Bubble Sort, Selection Sort or Insertion Sort)
2. An efficient comparison-based sort (Merge Sort, Quicksort or Heap Sort)
3. A non-comparison sort (Counting Sort, Bucket Sort or Radix Sort)
4. Any other sorting algorithm of your choice
5. Any other sorting algorithm of your choice

Python Application (40%):

This application should include implementations of the five sorting algorithms, along with a main
method which tests each of them. Note that it is fine to reuse or adapt code for sorting algorithms
from books, online resources or the lecture notes, as long as you add your own comments to the
code and acknowledge the source.

To benchmark the algorithms, you should use arrays of randomly generated integers with different
input sizes n. You should use a variety of different input sizes͕ e͘g͘ nсϭϬ͕nсϭϬϬ͕nсϱϬϬ͕͙͕nсϭϬ͕ϬϬϬ
etc. to test the effect of the input size on the running time of each algorithm. See the console output
below for a selection of suggested sizes of n. You may test values of n which are higher than 10,000 if
you wish, e.g. 500,000. Just be aware that algorithms such as Bubble Sort may take a long time to
run when using large values of n!

The running time (in milliseconds) for each algorithm should be measured 10 times, and the average
of the 10 runs for each algorithm and each input size n should be output to the console when the
program finishes executing. See sample console output below (note that the output is formatted to
3 decimal places and laid out neatly):

To measure the running time of a sorting algorithm, you should use Python͛s time module
(https://docs.python.org/3/library/time.html) to record the start and end times in milliseconds, then
subtract them to obtain the running time, as per the following code sample:

The following code sample below may be useful ʹ the function random_array() takes as input a value n
and returns an array of n randomly generated integers with values between 0 and 99. You may use this
code to generate random input instances which can be used when benchmarking your chosen sorting
algorithms. Note you must import randint from Python͛s random module
(https://docs.python.org/3/library/random.html) to use this code sample.

Report (60%):

1. Introduction (10%): Introduce the concept of sorting and sorting algorithms, discuss the
relevance of concepts such as complexity (time and space), performance, in-place sorting,
stable sorting, comparator functions, comparison-based and non-comparison-based sorts,
etc.

2. Sorting Algorithms (5 x 5 = 25%): Introduce each of your chosen algorithms in turn, discuss
their space and time complexity, and explain how each algorithm works using your own
diagrams and different example input instances.

3. Implementation & Benchmarking (25%): This section will describe the process followed
when implementing the application above, and will present the results of your
benchmarking. Discuss how the measured performance of the algorithms differed ʹ were
the results similar to what you would expect, given the time complexity of each chosen
algorithm? In this section you should use both a table and a graph to summarise the results
obtained (see samples below).

Sample results table – all values are in milliseconds, and are the average of 10 repeated runs
Size 100 250 500 750 1000 1250 2500 3750 5000 6250 7500 8750 10000
Bubble Sort 0.134 0.207 0.519 0.533 0.787 1.176 4.399 10.657 18.325 29.051 47.164 64.957 95.915
Selection Sort 0.012 0.059 0.202 0.406 0.674 1.005 3.754 9.002 26.442 34.325 52.65 75.001 94.126
Insertion Sort 0.015 0.078 0.262 0.539 0.802 1.184 4.851 9.004 17.727 29 44.216 68.007 94.588
Counting Sort 0.015 0.031 0.056 0.081 0.105 0.067 0.041 0.075 0.148 0.152 0.127 0.056 0.03
Merge Sort 0.042 0.032 0.062 0.098 0.132 0.169 0.239 0.291 0.386 0.491 0.515 0.593 0.676

Sample graph – note that the axes are labelled appropriately and include the correct units.

Ru
nn

in
g

tim
e

(m
ill

ise
co

nd
s)

50

45

40

35
Bubble Sort

30

25 Selection Sort

20 Insertion Sort

15

Merge Sort

10

5 Counting Sort

0

0 2000 4000 6000 8000 10000

Input size

